The impact of certain methodological choices on multivariate analysis of fMRI data with support vector machines

نویسندگان

  • Joset A. Etzel
  • Nikola Valchev
  • Christian Keysers
چکیده

Multivoxel pattern analysis of functional magnetic resonance imaging (fMRI) data is continuing to increase in popularity. Like all fMRI analyses, these analyses require extensive data processing and methodological choices, but the impact of these decisions on the final results is not always known. This study explores the impact of four methodological choices on analysis outcomes and introduces the technique of partitioning on random runs for characterizing temporal dependencies and evaluating partitioning methods. The analyses were performed on two fMRI data sets, which were repeatedly analyzed with support vector machines, varying the method of temporal compression, smoothing, voxel-wise detrending, and partitioning into training and testing sets. Smoothing sometimes slightly increased classification accuracy. Partitioning other than on the runs increased classification accuracy, and the random runs technique allowed us to attribute this improvement to the increased amount of training data, rather than to bias. The impact of the temporal compression and detrending methods varied so strongly with data set that general recommendations could not be drawn. These interactions suggest that, rather than searching for a universally superior set of methodological choices, researchers must carefully consider each choice in the context of each experiment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning.

Machine learning and pattern recognition techniques are being increasingly employed in functional magnetic resonance imaging (fMRI) data analysis. By taking into account the full spatial pattern of brain activity measured simultaneously at many locations, these methods allow detecting subtle, non-strictly localized effects that may remain invisible to the conventional analysis with univariate s...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery

Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...

متن کامل

A comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater

The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 54 2  شماره 

صفحات  -

تاریخ انتشار 2011